16 research outputs found

    Dynamics of coupled self-pulsating semiconductor lasers

    Full text link

    How big is too big? Critical Shocks for Systemic Failure Cascades

    Full text link
    External or internal shocks may lead to the collapse of a system consisting of many agents. If the shock hits only one agent initially and causes it to fail, this can induce a cascade of failures among neighoring agents. Several critical constellations determine whether this cascade remains finite or reaches the size of the system, i.e. leads to systemic risk. We investigate the critical parameters for such cascades in a simple model, where agents are characterized by an individual threshold \theta_i determining their capacity to handle a load \alpha\theta_i with 1-\alpha being their safety margin. If agents fail, they redistribute their load equally to K neighboring agents in a regular network. For three different threshold distributions P(\theta), we derive analytical results for the size of the cascade, X(t), which is regarded as a measure of systemic risk, and the time when it stops. We focus on two different regimes, (i) EEE, an external extreme event where the size of the shock is of the order of the total capacity of the network, and (ii) RIE, a random internal event where the size of the shock is of the order of the capacity of an agent. We find that even for large extreme events that exceed the capacity of the network finite cascades are still possible, if a power-law threshold distribution is assumed. On the other hand, even small random fluctuations may lead to full cascades if critical conditions are met. Most importantly, we demonstrate that the size of the "big" shock is not the problem, as the systemic risk only varies slightly for changes of 10 to 50 percent of the external shock. Systemic risk depends much more on ingredients such as the network topology, the safety margin and the threshold distribution, which gives hints on how to reduce systemic risk.Comment: 23 pages, 7 Figure

    Multiplicative noise: A mechanism leading to nonextensive statistical mechanics

    Full text link
    A large variety of microscopic or mesoscopic models lead to generic results that accommodate naturally within Boltzmann-Gibbs statistical mechanics (based on S1kdup(u)lnp(u)S_1\equiv -k \int du p(u) \ln p(u)). Similarly, other classes of models point toward nonextensive statistical mechanics (based on Sqk[1du[p(u)]q]/[q1]S_q \equiv k [1-\int du [p(u)]^q]/[q-1], where the value of the entropic index qq\in\Re depends on the specific model). We show here a family of models, with multiplicative noise, which belongs to the nonextensive class. More specifically, we consider Langevin equations of the type u˙=f(u)+g(u)ξ(t)+η(t)\dot{u}=f(u)+g(u)\xi(t)+\eta(t), where ξ(t)\xi(t) and η(t)\eta(t) are independent zero-mean Gaussian white noises with respective amplitudes MM and AA. This leads to the Fokker-Planck equation tP(u,t)=u[f(u)P(u,t)]+Mu{g(u)u[g(u)P(u,t)]}+AuuP(u,t)\partial_t P(u,t) = -\partial_u[f(u) P(u,t)] + M\partial_u\{g(u)\partial_u[g(u)P(u,t)]\} + A\partial_{uu}P(u,t). Whenever the deterministic drift is proportional to the noise induced one, i.e., f(u)=τg(u)g(u)f(u) =-\tau g(u) g'(u), the stationary solution is shown to be P(u,){1(1q)β[g(u)]2}11qP(u, \infty) \propto \bigl\{1-(1-q) \beta [g(u)]^2 \bigr\}^{\frac{1}{1-q}} (with qτ+3Mτ+Mq \equiv \frac{\tau + 3M}{\tau+M} and β=τ+M2A\beta=\frac{\tau+M}{2A}). This distribution is precisely the one optimizing SqS_q with the constraint q{du[g(u)]2[P(u)]q}/{du[P(u)]q}=_q \equiv \{\int du [g(u)]^2[P(u)]^q \}/ \{\int du [P(u)]^q \}= constant. We also introduce and discuss various characterizations of the width of the distributions.Comment: 3 PS figure

    From 2000 Bush-Gore to 2006 Italian elections: Voting at fifty-fifty and the Contrarian Effect

    Get PDF
    A sociophysical model for opinion dynamics is shown to embody a series of recent western hung national votes all set at the unexpected and very improbable edge of a fifty-fifty score. It started with the Bush-Gore 2000 American presidential election, followed by the 2002 Stoiber-Schr\H{o}der, then the 2005 Schr\H{o}der-Merkel German elections, and finally the 2006 Prodi-Berlusconi Italian elections. In each case, the country was facing drastic choices, the running competing parties were advocating very different programs and millions of voters were involved. Moreover, polls were given a substantial margin for the predicted winner. While all these events were perceived as accidental and isolated, our model suggests that indeed they are deterministic and obey to one single universal phenomena associated to the effect of contrarian behavior on the dynamics of opinion forming. The not hung Bush-Kerry 2005 presidential election is shown to belong to the same universal frame. To conclude, the existence of contrarians hints at the repetition of hung elections in the near future.Comment: 17 pages, 8 figure

    On the Influence of Noise on the Critical and Oscillatory Behavior of a Predator-Prey Model: Coherent Stochastic Resonance at the Proper Frequency

    Full text link
    Noise induced changes in the critical and oscillatory behavior of a Prey-Predator system are studied using power spectrum density and Spectral Amplification Factor (SAF) analysis. In the absence of external noise, the population densities exhibit three kinds of asymptotic behavior, namely: Absorbing State, Fixed Point (FP) and an Oscillatory Regime (OR) with a well defined proper (natural) frequency. The addition of noise destabilizes the FP phase inducing a transition to a new OR. Surprisingly, it is found that when a periodic signal is added to the control parameter, the system responds robustly, without relevant changes in its behavior. Nevertheless, the "Coherent Stochastic Resonance" phenomenon is found only at the proper frequency. Also, a method based on SAF allows us to locate very accurately the transition points between the different regimes.Comment: RevTex, 18 pgs, 6 figures. Submitted to Physics Letters A (2000

    Opinion dynamics: models, extensions and external effects

    Full text link
    Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]Comment: 42 pages, 6 figure
    corecore